
EtherCAT® Master Stack
• Technical Presentation

Application Programming Interfaces

EtherCAT Master Core

V1.1 3

EC-Master Architecture

Customer
C/C++ Application

Operating System
Adaptation

“ No full-blown OS
required”

Optimized
Real-Time Ethernet
Driver with direct

HW access

acontis
Ethernet driver

Process
Data Image

cyclic
commands

XML Parser.XML

EtherCAT Network
Information (ENI)

File

OS Layer

Mailbox
Services

req. resp.

acyclic
commands

HARDWARE

Standard Ethernet
MAC

RAM FLASH

CPU

Wrapper Library provides API for
object oriented access

Customer
C# Application

Customer
Python Script

V1.1 4

The EtherCAT Master Core Library and the RAS Server Module are implemented
in C++. The API interfaces are C language interfaces, thus the master can be used
in ANSI-C as well as in C++ environments.

Programming the Master Core Library in C/C++

Customer
Application

Master Core Library (EcMaster.dll, libEcMaster.a, …)

Class B Example
EcMasterDemo

Programing Interface: “C” API

Class B Example
EcMasterDemoSyncSm

Class A Example
EcMasterDemoMotion

Class A Example
EcMasterDemoDc

RAS Server

“C” API

• EcMasterDemo is the basic example application for EC-Master. The
example shows how to initialize the master and how to put the
network into operational state. Based on the provided ENI file this
example can handle all kind of EtherCAT Slaves.

• EcMasterDemoSyncSm demonstrates a different network timing which
requires the interrupt from the Ethernet controller used by the master.
This cyclic frame is transmitted at the begin of the cycle and the
process data are updated immediately after the frame returns.

• EcMasterDemoDc is a good starting point for application requiring the
accurate synchronization of slaves based on the Distributed Clocks (DC)
technology. To synchronize the master controller with the slaves several
modes can be selected.

• EcMasterDemoMotion comes with a simple motion control library to
control drives implemented according to the profile CiA402 and the
ETG Implementation Directive ETG.6010. The example supports the
operation modes Cyclic Synchronous Position (CSP) and Cyclic
Synchronous Velocity (CSV).

V1.1 5

C/C++ Example applications

V1.1 6

• Supported Operating Systems: All

• Supported Compilers: Microsoft, GNU, LLVM

• Supported IDE: Microsoft Visual Studio, Eclipse, WindRiver Workbench, QNX
Momentics, IAR, Keil MDK

Programming the Master Core Library in C/C++
Operating systems and tools

C++

C#

Programming in C# (1)

Customer
C# Application

Master Core Library

Example
EcMasterDemoDotNet

“C” API

RAS Client
Library

“C” API

Simulator Library

“C” API

Wrapper Library provides API for object oriented access
(EcWrapper.DLL, libEcWrapper.so)

Programming Interface: C# (.NET)
(EcWrapperDotNet.DLL)

RAS Server

“C” API

RAS Server

“C” API

The example EcMasterDemoDotNet and the .NET wrapper are written in C#. The
target platform is AnyCPU. The other libraries are written in C++ and are
platform specific. The Wrapper Library is a helper that prepares the API for .NET.
The demo runs in conjunction with Microsoft .NET framework.

V1.1 7

C# Example application

• EcMasterDemoDotNet is a basic Windows Forms (C#) GUI application for EC-
Master. The example shows how to initialize the master and how to put the
network into operational state. Based on the provided ENI file this example can
handle all kind of EtherCAT Slaves. It is also shown how to read and write a
variable. Even an example of how to read a register from the CoE object
dictionary can be found.

Operating systems and tools

• Supported Operating Systems
 Windows: MS .NET 2.0, MS .NET Standard 2.0

 Linux: MS .NET Standard 3.0, Mono project

• Supported IDE: Microsoft Visual Studio (Code)

• Supported Compiler: Microsoft

V1.1 8

Programming in C# (2)

Python

Programming in Python (1)

Customer
Python Script

Example
EcMasterDemoPython

Programming Interface: Python
(EcWrapperPython.py)

C++

Master Core Library

“C” API

RAS Client
Library

“C” API

Simulator Library

“C” API

Wrapper Library provides API for object oriented access
(EcWrapper.DLL, libEcWrapper.so)

RAS Server

“C” API

RAS Server

“C” API

Example
EcSimulatorHiLDemoPython

The examples and the Python wrapper are written in Python. They are not
platform specific. The other libraries are written in C++ and are platform specific.
The EcWrapper is a helper that prepares the API for python.

V1.1 9

Python Example applications

• Similar to the other demos the EcMasterDemoPython shows how to call the
EtherCAT Master API. There is also a Python demo for the EC-Simulator. The
python demos can also run in interactive mode e. g. to set an output of the
EtherCAT network or something else. This is very useful to quickly test different
behaviors of the EtherCAT network e. g. with the EC-Simulator.

Operating systems and tools

• Supported Operating Systems: Windows (Python 3.7), Linux (Python 3.7)

• Supported IDE: Python IDLE Shell, Microsoft Visual Studio Code

V1.1 10

Programming in Python (2)

EtherCAT Network Timing

Interaction between customer application and EtherCAT network

The benefits are:

• No synchronization issues between application and EtherCAT Master.

• Consistent process data without using any locks.

• Various network timings driven by the application possible

• Cyclic part may run within Interrupt Service Routine (ISR)

• Easy to integrate

V1.1 12

EC-Master without internal tasks

EtherCAT Master has no internal tasks:

From the application side it looks like a driver, which is activated by calling
some simple functions, the so called “Cyclic Jobs”.

• Cyclic frames:
 Contain process output and input data

 Distributed Clocks (DC): Contain datagram to distribute network time

 Typically sent by master in every cycle

 Defined by the configuration tool (which data to read and to write)

• Acyclic frames:
 Asynchronous, event triggered communication

 Mailbox communication (CoE, FoE, EoE)

 Status requests (e. g. read slave state information)

 Raw EtherCAT datagrams requested by application

V1.1 13

Cyclic and acyclic EtherCAT frames

EtherCAT Master: Refresh Inputs

eUsrJob_ProcessAllRxFrames: Process all received frames

Cyclic jobs

P

S

MT

App

EtherCAT Master: Write Outputs
eUsrJob_SendAllCycFrames: Send cyclic frames

EtherCAT Master: Administration
eUsrJob_MasterTimer: Trigger master and slave state machines

Application: Work on inputs and create output values

AS
EtherCAT Master: Send acyclic datagrams/commands
eUsrJob_SendAcycFrames: Transmit pending acyclic frame(s).

V1.1 14

V1.1 15

Standard Network Timing: Short output dead time
Cyclic frames

App. Task SP

Cycle time, e .g. 1 ms

MT
Idle

App. Task SP MT
Idle

App. Task SP MT
Idle

Refresh Inputs Write Outputs
Master

Administration

Timer

Interrupt

CPU

DMA

NIC

NETWORK

EtherCAT

Cycle

Cycle 1 Cycle 2 Cycle 3

Physical

I/O

Input Dead Time

Input Signal

Output Signal

Output

Dead Time

P

V1.1 16

Standard Network Timing: Short output dead time
Cyclic and acyclic frames

SP

Cycle time, e .g. 1 ms

Cyclic

frame

MTCPU

DMA

NIC

NETWORK

Idle

Acyclic Send

AS ASApp. Task SP MT
Idle

App. Task SP MT
Idle

AS

Acyclic

frame

Cycle 1 Cycle 2 Cycle 3

No Acyclic

frame

Long Acyclic

frame

App. Task P

V1.1 17

• Long Input dead time (physical input to application)

• Short Output dead time (application to physical output)

• Cyclic frame is transmitted after the application
 Higher jitter (can be compensated using Distributed Clocks)

• No interrupt from network controller (NIC) required
 High performance, lower CPU load
 Simple hardware configuration

• Cyclic task is idle while frame is running through the slaves

• Simple and robust implementation

Standard Network Timing: Short output dead time
Characteristics

V1.1 18

Good and bad network cycles

SP

500 usec

MTCPU

DMA

NIC

NETWORK

ASApp.

Cycle 1: Good:

Both frames

back before

next cycle

SP MTASApp.

Long acyclic frame

not back before

cycle 3 starts

 no problem

Cycle 2: Good:

Cyclic frame

back before

next cycle

SP MTASApp.

Lost Frame

Cycle 3: Bad:

Cyclic frame is

lost

SP MTApp.

Huge

Jitter

AS

Too late

Cycle 5: Bad:

Cyclic frame is

not back before

next cycle

SP MTASApp.

Cyclic frame

is missing

detected

Cycle 6: Bad

Problem reported

SP MTASApp.

Cyclic frame

is missing

detected

Cycle 4: Bad:

Problem reported

V1.1 19

Alternative Network Timing: Short Input dead time
Cyclic frames

Cycle Time, e .g. 1 ms

CPU

DMA

NIC

NETWORK

App. TaskS P MT

Process Inputs

Send Outputs

Master Administration

Timer

Interrupt

App. TaskS P MT App. TaskS P MT
Idle

NIC IRQ

Round Trip Time

Idle

Input

Dead Time

Input Signal

Output Signal

Output Dead Time

EtherCAT

Cycle

Physical

I/O

Cycle 1 Cycle 2 Cycle 3

• Short Input dead time (physical input to application)

• Long Output dead time (application to physical output)

• Cyclic frame is transmitted a the begin of the cycle
 Less jitter

• Interrupt from network controller (NIC) required
 Not available on all platforms
 Cyclic task is interrupted and scheduled several times

• Cyclic task has to wait while frame is running through the slaves

• Higher implementation effort

V1.1 20

Alternative Network Timing: Short Input dead time
Characteristics

EtherCAT Synchronization and Distributed Clocks

• Free Run:
Slave’s application is not synchronized to EtherCAT.

• Synchronous with Sync Manager (SM) Event:
Slave’s application is synchronized to the SM2/SM3 Event.

• Synchronous with DC SYNC Signal:
Slave’s application is synchronized to the SYNC0 or SYNC1 signal,
which are based on the distributed clocks (DC) unit.

V1.1 22

Synchronization modes in the slave

23

• Network update rate is slower than slave´s application cycle time

• Slave’s application is not synchronized to EtherCAT. Slave task starts after local
timer signal is generated.

• Drawback 1: Slave task may read input data twice

• Drawback 2: Slave task may miss input data, if cycle time of local timer signal is
bigger than network cycle

Free Run
Timing diagram

V1.1

24

• Slave task starts after frame is received.

• Slave’s application is synchronized to the SM2 event (if cyclic outputs are
transmitted) or the SM3 Event (if only cyclic inputs are transmitted).

• Slave task has always “new” input data and do not miss data

• Drawback: This time can jitter in the range of a few microseconds due to the
EtherCAT Master implementation (delay in Stack, PHY & MAC Delay, etc).

Synchronous with Sync Manager (SM) Event
Timing diagram - Drawback Jitter

V1.1

25

Synchronous with Sync Manager (SM) Event
Drawback: Delay between slaves

Slave N

EtherCAT Master

MAC 1

RX TX

TX Unit

TX

RX Unit

RX

Slave 2

RX TX

RXTX

Slave 1

RX TX

RXTX

RX TX

RXTX

... ...

ca. 1 usec

delay

x usec delay

frames received at different time on

each slave

V1.1

26

• Slave’s application is synchronized to the SYNC0 or SYNC1 signal, which are
based on the distributed clocks (DC) unit.

• Slave task is scheduled after DC-SYNC signal is raised

• The jitter could be reduced to a few nanoseconds.

• Drawback: Master has to support the DC features

Synchronous with DC SYNC Signal
Timing diagram

V1.1

1. The DC reference clock provides the System (Network) Time.
This time – a counter in the EtherCAT slave controller - is driven by an
oscillator.
Based on this time the DC-Sync-Signal (ESC hardware signal) is raised.

2. The cyclic frames, containing the process data, are sent by the EtherCAT
Master within the cyclic task (job task). This cyclic task is scheduled by the
operating system due to a timer interrupt on the master controller.
This timer (counter) is driven by an oscillator.

Due to the 2 oscillators a synchronization is required to avoid that the
DC-SYNC-Signal is raised while the cyclic frame is arriving in the slaves.

DC Synchronization between Master and Slave
Why important?

V1.1 27

Distributed Clocks Master (DCM) Synchronization
Principle

EtherCAT Frame

Slave Task

Timer IRQ

on Master

Without DCM

With DCM

Distance nearly constant Slave Task

DC Sync

Signal

V1.1 28

Blue line: Start of cyclic task (Job-Task) driven by oscillator on master controller

Red line: DC-Sync signal based on System Time driven by oscillator in the slave.
Slave task is scheduled after DC-Sync is raised.

Without synchronizing both times, the EtherCAT frame (process data) may
transmitted through the network while the slave task is scheduled.
This will cause the same issues as in free run mode.
Outputs (Master to Slave): Slave has no new data in one cycle, or will miss output data

 Inputs (Slave to Master): Master has no new data, or will miss input data

Bus Shift: DC Reference Clock follows the Master Clock/Timer

• Adjust the Bus Time Register of the DC Reference Clock. The Ref.clock converge to this
time.

• The DC Ref. clocks time (EtherCAT system time) is distributed to the slaves behind the
Ref.clock. The slaves will converge to the system time.

DCM: Bus Shift Mode (default)
Reference Clock controlled by Master/Controller Time

V1.1 29

 Master

Ref-Clock

DC

DC

DCM: Master Shift Mode
Master/Controller Time controlled by Reference Clock

Master Shift: Master Clock/Timer follows the DC Reference Clock
• The timer frequency on Master controller is adjusted.

E. g., if the timer is to fast, slow down the timer for one cycle and then switch back
to the original frequency.

• Pro: Reduced DCM controller error
• Pro: Quality independent from cyclic frame send time jitter
• Con: Requires enhanced OS-Layer:

OsHwTimerGetInputFrequency(), OsHwTimerModifyInitialCount()
• Con: Not available on all operating systems!

V1.1 30

 Master

Ref-Clock

DC

DC

DCM Controller Set Value (default)
“Controlling the time between cyclic frame and Sync0”

CPU

DMA

Mem.

Frame

App. Task OI MT
Idle

Slaves

DC Sync0

V1.1 31

Frame

Send Time

Controller SetVal

• Minimum controller error depending on
cyclic frame send time jitter
 Frame send time depends on application

execution time

 App execution time should be nearly constant

 The DCM controller is using a filter algorithm
to deal with frame send time jitter

• Works fine in most cases

DCM Controller Set Value (enhanced)
“Controlling the time between start of cycle and Sync0”

CPU

DMA

Mem.

Frame

App. Task OI MT
Idle

Slaves

DC Sync0

V1.1 32

Controller SetVal

• Reduced DCM controller error

• Quality independent from
cyclic frame send time jitter

• Requires enhance OS-Layer
 OsHwTimerGetInputFrequency()

 OsHwTimerGetCurrentCount()

• Not available on all operating systems!

DCM: Master is Reference Clock Mode
Master/Controller time is used as reference clock

Master Ref Clock Mode

• No need for platform adaptation

• The DC reference time (register 0x0910) is provided by the controller

• Pro: No DCM controller required Reduced CPU load compared to other modes

• Pro: Available on all platforms

• Con: Very long startup time compared to other modes, because the
synchronization requires a minimum of 15.000 frame = 15.000 cycles

V1.1 33

 Master

Ref-Clock

DCM: Link-Layer Reference Clock Mode
Master/Controller time is used as reference clock

Link-Layer Ref Clock Mode

• The DC reference time (register 0x0910) is provided by the controller

• Pro: No DCM controller required Reduced CPU load compared to other modes

• Pro: Reduced DCM controller error

• Pro: Quality independent from cyclic frame send time jitter

• Con: Requires enhanced Link-Layer: EC_LINKIOCTL_GETTIME

• Con: Not available on all operating systems!

V1.1 34

 Master

Ref-Clock

Distributed Clocks Master Sync
DCM Mode Selection Criteria

Criteria Bus Shift

Mode

Master Shift

Mode

Master

Ref Clock

Mode

Link-Layer

Ref Clock

Mode

Accuracy of

SYNC Signals

+/- 1000 nanosec

jitter

+/- 20 nanosec

jitter

+/- 20 nanosec jitter +/- 20 nanosec jitter

Maximum

acceptable drift

between master

and reference

clock

600 ppm

 very precise timer

in control system

required

no physical

limitation

600 ppm

 very precise timer

in control system

required

600 ppm

 very precise timer

in control system

required

Multiple

EtherCAT

segments

possible not possible possible possible

Implementation possible not possible on all

operating systems

possible not possible on all

operating systems

Startup time Short Short Long Short

V1.1 35

Ethernet over EtherCAT® (EoE)

EtherCAT Master Core

37

EC-Master Class A and B:
Virtual Switch for EoE included

V1.1

Customer Application

EC Link Layer

Standard Ethernet MAC

Process Data
Image

cyclic
commands

XML Parser
Mailbox
Services

req. resp.

acyclic
commands

OS Layer

Virtual Ethernet
Switch for EoE

e.g. Switch
Port EL6601

e.g. integrated
Web Server

EC-Master includes a
„Virtual Ethernet
Switch“ to transport
the EoE protocol
between different
slaves

Each slave using EoE requires an own IP address
Setting IP address in EC-Engineer

IP-Address
192.168.150.5

Slave supports EoE

V1.1 38

Functional Safety over EtherCAT (FSoE)

40

• Fully integrated solution: Safe and standard communication in one channel

• Decentralized Safety-Logic

• Standard Master controller routes the safety messages

Safety over EtherCAT: Implementation Example

V1.1

S

S

S

Safety Inputs

FSoE Slave

Safety Logic

FSoE Master

Safety Outputs

FSoE Slave

Safety Drives

FSoE Slave S

 Master

V1.1 41

Example: Safety configuration with
Beckhoff TwinCAT

.xml

ENI File

Real-Time Kernel/OS

EtherCAT Application

Beckhoff TwinCAT

 Master

• Information is given in ENI file

• Copying of the data will be handled by master stack automatically
 In the example below 48 bits from process data input memory starting at offset 0 are

copied to process data output memory at offset 136

V1.1 42

Safety requires Slave-to-Slave Communication

.xml
ENI File

Performance Measurements

Device: TI AM3359 Industrial Communications Engine
CPU: TI Sitara AM3359 (Cortex-A8), 600 Mhz
Software: EC-Master V3.1.1.01 TI-RTOS, Link Layer ICSS-PRU
Features: Distributed Clocks with DCM Bus Shift

ARM Cortex-A8, 32-Bit, 600 MHz
CPU load depending on number of slaves

Number of Slaves 16 32 64

Network cycle time 250 usec 500 usec 1000 usec

Payload 128 Bytes 256 Bytes 512 Bytes

EC-Master Function

Process Inputs [usec] 34.2 35.1 50.2

Send Outputs [usec] 17.0 19.1 33.1

Administration [usec] 11.7 14.2 28.0

Send Acyclic Frame [usec] 16.2 14.9 14.5

Total Time [usec] 79.1 83.3 125.8

CPU Load [percent] 31.6 % 16.7 % 12.5 %

V1.1 44

Device: Toradex Apalis iMX8
CPU: NXP i.MX 8QuadMax 2x Cortex™-A72, 4x Cortex™-A53, 1000 Mhz
Software: EC-Master V3.1.1.01 Linux_aarch64, Link Layer FSLFEC
Features: Distributed Clocks with DCM Bus Shift

ARM Cortex-A72, 64-Bit, 1000 MHz
CPU load depending on number of slaves

Number of Slaves 16 32 64

Network cycle time 250 usec 500 usec 1000 usec

Payload 128 Bytes 256 Bytes 512 Bytes

EC-Master Function

Process Inputs [usec] 17.1 18.8 27.1

Send Outputs [usec] 5.2 5.3 6.1

Administration [usec] 3.6 5.0 12.0

Send Acyclic Frame [usec] 3.6 3.6 3.6

Total Time [usec] 29.5 32.7 48.8

CPU Load [percent] 11.8 % 6.6 % 4.8%

V1.1 45

Device: Industrial Board IB891-D5 (EC1)
CPU: Intel Atom D510 1600MHz
Software: EC-Master V3.1.1.01 for QNX_x64 , Link Layer Realtek 8169
Features: Distributed Clocks with DCM Bus Shift

Intel x64, 64-Bit, 1600 MHz
CPU load depending on number of slaves

Number of Slaves 16 32 64

Network cycle time 250 usec 500 usec 1000 usec

Payload 128 Bytes 256 Bytes 512 Bytes

EC-Master Function

Process Inputs [usec] 11.3 11.5 13.5

Send Outputs [usec] 6.3 6.4 6.9

Administration [usec] 5.8 8.0 15.7

Send Acyclic Frame [usec] 4.2 4.4 4.1

Total Time [usec] 27.6 30.3 40.2

CPU Load [percent] 11.0 % 6.0 % 4.0 %

V1.1 46

EtherCAT® Master on Linux

K
er

n
el

 S
p

ac
e

U
se

r
Sp

ac
e

EtherCAT Master Core

Customer Application

SOCK_RAW DriverOS Adaptation

User Space

Native Ethernet
Driver

HARDWARE

Standard Ethernet
MAC

RAM FLASH

CPU

Linux Network Stack

Kernel functions

Architecture 1: Linux Network Driver

HW driver
independent

SOCK_RAW interface

V1.1 48

The EC-Master stack communicates with the slaves by sending and receiving
EtherCAT frames using an Standard Ethernet network adapter (MAC).

The Linux system includes different network drivers for the different adapter
types. The Linux network driver can be used by means of an abstracted network
adapter type independent interface called SOCK_RAW to send and receive
frames, although the performance may be poor and real-time constraints are
typically not kept due to Linux network stack inclusion and driver code that is not
optimized for high performance cyclic operation.

Because SOCK_RAW is typically available on every Linux Distributions’ Kernel,
the pre-compiled EcMasterDemo can be used for evaluation of the EC-Master
library‘s general functionality without compiling any host specific files. For
discreet slaves that e.g. implement Distributed Clocks, real-time constraints
must be kept. In this case SockRaw is very likely not able to send and receive
frames in time and the EtherCAT slaves will refuse the operation. Therefore
SOCK_RAW should be only used for initial evaluation purpose and be replaced
with the acontis real-time driver as explained below.

Architecture 1: Linux Network Driver

V1.1 49

K
er

n
el

 S
p

ac
e

U
se

r
Sp

ac
e

EtherCAT Master Core

Customer Application

acontis
Ethernet Driver

OS Adaptation

User Space
HARDWARE

Standard Ethernet
MAC

RAM FLASH

CPU

Module
atemsys

Kernel functions

Direct access to
hardware granted by

atemsys

Architecture 2: acontis Real-time Driver

V1.1 50

The acontis Real-time Driver replaces the standard Linux Ethernet network adapter
(MAC) driver for real-time EtherCAT usage.

The driver runs in User Space and handles the MAC directly for high performance
cyclic operation. It needs direct access to the MAC granted by an GPL‘ed Kernel
Module called atemsys. The Kernel module must be compiled to match the running
Kernel. Methods for Kernel module compilation can be found in the Linux
Distribution‘s documentation. Additionally a build recipe for Yocto Linux is included.

The Real-time Driver is not GPL‘ed and must be licensed. It needs the atemsys loaded
at the Linux target for running. With the granted access to the MAC HW it operates
fast on sending and receiving frames by completely bypassing the Linux network
stack.

The standard Linux network adapter driver may not operate at the same time on the
same instance as the acontis Real-time Driver. It is therefore needed to unbind the
network adapter instance by removing the driver from the system, unbinding the
instance using the virtual sys-fs or in case of embedded devices by modifying the
Linux Device Tree.

The atemsys is shipped with the EC-Master and should be updated if the EC-Master
contains a newer version.

Architecture 2: acontis Real-time Driver

V1.1 51

Architecture 3: Using Linux device tree

K
er

n
el

 S
p

ac
e

U
se

r
Sp

ac
e

acontis Ethernet Driver

Standard
Ethernet
MAC

Module atemsys

Linux PHY
driver

MDIO
Interface

MDIO
Register PHY

MDIO Data

Link Status

MDIO Bus

Link

MII/RGMII

EtherCAT Master Core

Customer Application

OS
Layer

V1.1 52

The Linux operating system provides drivers for most common Ethernet
controllers and the related physical transceivers (PHY). The manufacturer
specific PHY circuit is handled by an dedicated kernel driver.

To make use of this infrastructure, the acontis kernel module atemsys has to be
included in the Linux device tree as an official driver for the Ethernet controller.
As a result atemsys can interact with Linux drivers.

Depending on the hardware architecture, atemsys can grants access to the MDIO
bus to the Linux drivers, or request MDIO operations by Linux drivers.

The PHY “OS Driver” functionality is configured exclusively through the Linux
device tree and doesn’t required any additional configuration at the application
level.

Architecture 3: acontis Real-time Driver
with Linux device tree support

53V1.1

Features according to ETG.1500 Master Classes

Master Core Features (1)

Feature name
Master

Class A

Master

Class B

Basic Features

Service Commands, IRQ field in datagram, Slaves with Device

Emulation, EtherCAT State Machine, Error Handling, EtherCAT

Frame Types

Sophisticated error detection and diagnosis:

Lost cable connection, missing/wrong, slave response, slave

operation monitoring, Ethernet link layer debug messages, >

200 error codes

VLAN --

Process Data Exchange

Cyclic PDO (High performance up to 50 us cycle time), Multiple

Tasks

Network Configuration

Online scanning, Reading ENI, Compare Network configuration,

Explicit Device identification, Station Alias Addressing, Read and

Write to EEPROM

V1.1 58

Master Core Features (2)

Feature name
Master

Class A

Master

Class B

Mailbox Support

State change check: Logical and physical polling

Resilient Layer (repeating mailbox communication)

Multiple mailbox channels (multiple protocols in parallel)

CoE Mailbox Protocol

SDO Up- and Download,

Normal, Expedited and Segmented Transfer,

SDO Info service (Read Object Dictionary),

Complete Access, Emergency Message

EoE Mailbox Protocol

Services for tunneling Ethernet frames. includes all

specified EoE services Virtual Switch

EoE Endpoint interface to Operating Systems FP FP

FoE Mailbox Protocol

FoE Services

Firmware Up- and Download

Boot State

V1.1 59

Master Core Features (3)

Feature name
Master

Class A

Master

Class B

SoE Mailbox Protocol

SoE Services

AoE Mailbox Protocol

AoE Services

VoE Mailbox Protocol

VoE Services

Synchronization with Distributed Clock (DC)

Initial propagation delay measurement,

Offset compensation, Set start time,

Continuous drift compensation,

Sync window monitoring

 --

Master must synchronize itself on the reference clock.

DC master synchronization (DCM).

 --

Slave-to-Slave Communication

via Master, required for safety devices

V1.1 60

