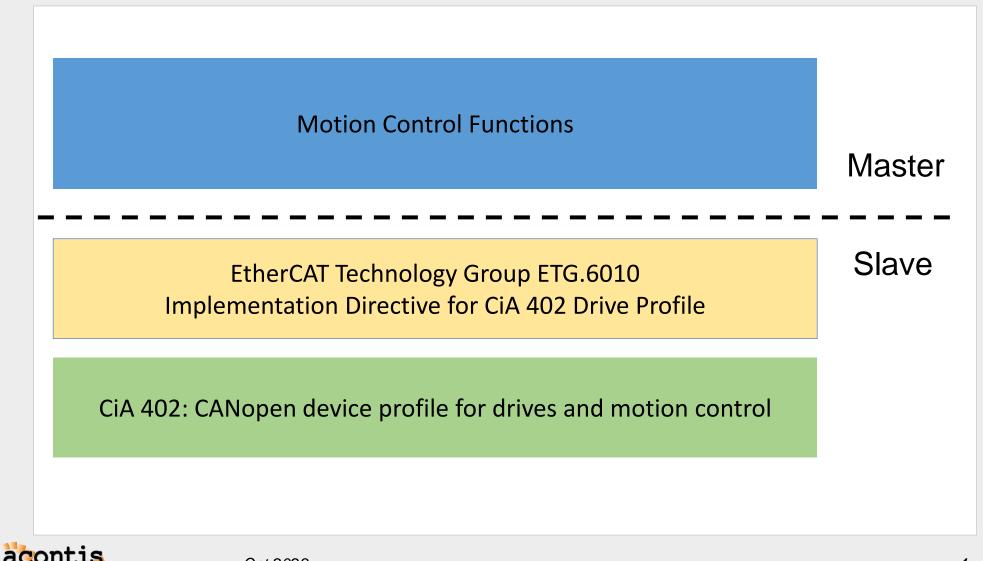
EC Motion

Motion Control Library in "C++" Controlling Drives based on CiA 402 device profile

Content

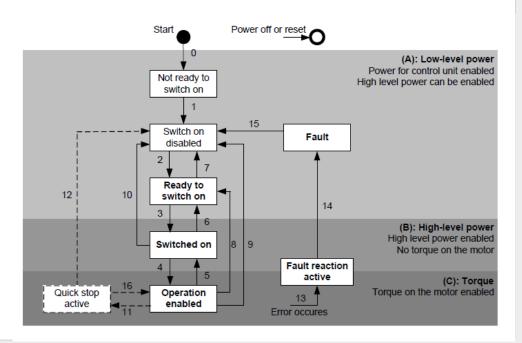
- Introduction
- EC-Motion Library Architecture
- Administrative Functions Blocks
- Single Axis Motion Functions Blocks
- Examples
- Highlights


Introduction

- Most available drives with EtherCAT slave interface are based on the CiA 402 standard, e. g., Yaskawa, Copley, Beckhoff, Omron, ...
- CiA 402 organizes parameters in a so called object dictionary and a drive state machine
- Based on this definitions it shall be possible to run drives from different manufacturers with the same application
- EtherCAT Technology Group (ETG) document
 <u>ETG6010 V1i0i0 D R CiA402 ImplDirective</u> gives additional implementation hints for using CiA 402 with EtherCAT

Introduction Standards

4


EC *Motion*

Introduction CANopen device profile for drives and motion control

CiA 402: CANopen device profile for drives and motion control

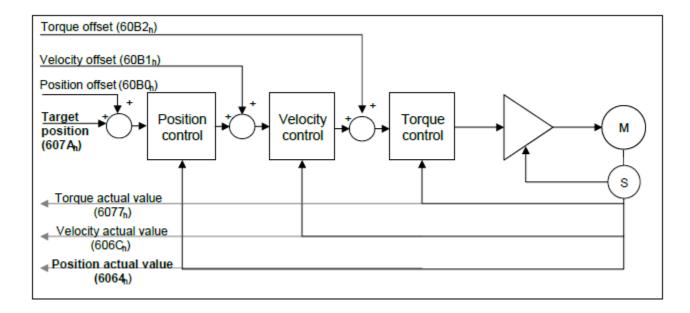
- CiA 402 organizes parameters in a so called object dictionary. Each parameter has a defined number (index + subindex) and meaning
 - Object 0x6040: Control Word
 - Object 0x6041: Status Word
 - Object 0x607A: Target Position
 - Object 0x6064: Actual Position
 -
- CiA 402 drive state machine

EC *Motion*

Introduction ETG Implementation Directive for CiA 402 Drive Profile

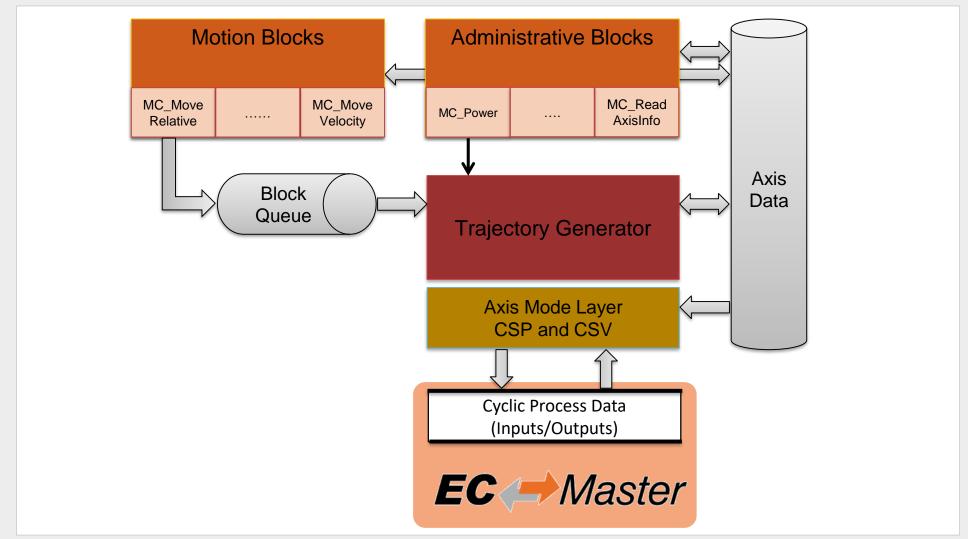
ETG Implementation Directive for CiA 402 Drive Profile

 The drive has to support at least on of the cyclic operation modes: CSP or CSV or CST


Mode of operation	Abbr.	Code	Category	Remarks
Profile position mode	рр	1	0	
Velocity mode (frequency converter)	vl	2	0	
Profile velocity mode	pv	3	0	
Torque profile mode	tq	4	0	
Homing mode	hm	6	0	
Interpolated position mode	ip	7	0	
Cyclic synchronous position mode	csp	8	С	at least one of
Cyclic synchronous velocity mode	csv	9	С	these modes
Cyclic synchronous torque mode	cst	10	С	shall be supported
Cyclic synchronous torque mode with commutation angle	cstca	11	0	
Manufacturer specific mode		-1281	0	

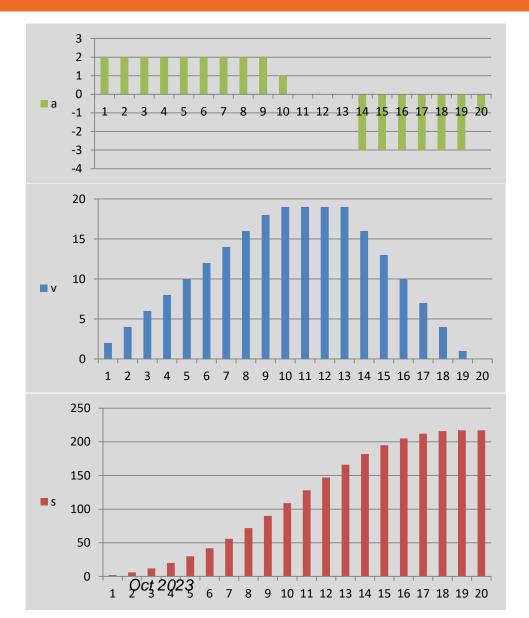
ETG Implementation Directive for CiA 402 Drive Profile

CSP: Cyclic Synchronous Position Mode


- Application has to set a new "Target position" in every cycle (trajectory generator)
- Position, Velocity and Torque are controlled by the drive

EC *Motion*

EC-Motion Control Library Architecture



Trajectory Generator Example: CSP without jerk limitation

acont

3 sections:

- Section 1: Accelerate a=2 up to v=29
- Section 2: Constant velocity v=29
- Section 3: Decelerate a=-3 down to v=0

9

EC-Motion Product Overview

- EC-Motion is a motion control solution for drives operating in a cyclic mode (CSP or CSV).
- EC-Motion is targeted to work in conjunction with the EC-Master (EtherCAT Master Stack). But EC-Master is not mandatory. Simulation only mode is supported as well.
- EC-Motion provides a Programmable Logic Controller (PLC) style interface. It is designed to be easy integrating in a PLC for controlling EtherCAT connected servo drives.
- The following EtherCAT drive profiles are supported:
 - CiA[®] 402: CANopen device profile for drives and motion control

Administrative Functions Blocks (1)

- **MC_POWER_T**: This Function Block controls the power stage (On or Off).
- **MC_HOME_T:** This Function Block commands the axis to perform the «search home» sequence.
- **MC_SETPOSITION_T:** This Function Block shifts the coordinate system
- MC_READPARAMETER_T, MC_READBOOLPARAMETER_T: Returns the value of a parameter
- MC_WRITEPARAMETER_T, MC_WRITEBOOLPARAMETER_T: Modifies the value of a parameter
- MC_READDIGITALINPUT_T, MC_READDIGITALOUTPUT_T, MC_WRITEDIGITALOUTPUT_T: Function Block gives access to the value of the input and outputs

Administrative Functions Blocks (2)

- **MC_READACTUALPOSITION_T**: This Function Block returns the actual position.
- **MC_READACTUALVELOCITY_T**: This Function Block returns the actual velocity.
- **MC_READMOTIONSTATE_T**: This Function Block returns the actual velocity.
- **MC_READAXISINFO_T:** This Function Block reads information concerning an axis
- MC_READ_ERROR_T: This Function Block presents general axis errors not relating to the Function Blocks
- **MC_RESET_T**: This Function Block makes the transition from the state 'ErrorStop' to 'Standstill' by resetting all internal axis-related errors

Single Axis Motion Functions Blocks (1)

- **MC_STOP_T**: Commands a controlled motion stop and transfers the axis to the state 'Stopping'.
- **MC_HALT_T**: Commands a controlled motion stop and transfers the axis to the state 'Standstill'.
- **MC_MOVEABSOLUTE_T**: Commands a controlled motion to a specified absolute position.
- **MC_MOVERELATIVE_T**: Commands a controlled motion of a specified distance relative to the set position at the time of the execution.
- **MC_MOVEVELOCITY_T**: Commands a never ending controlled motion at a specified velocity.
- **MC_MOVE_CONT_ABSOLUTE_T**: Commands a controlled motion to a specified absolute position ending with the specified velocity.
- **MC_MOVE_CONT_RELATIVE_T**: Commands a controlled motion of a specified relative distance ending with the specified velocity.
- **AMC_CHECK_TARGETPOS_REACHED_T**: Check if the actual position has reached the commanded position.

Single Axis Motion Functions Blocks (2)

- MC_CalcMoveProfile, MC_CalcMoveProfileBuffered: Calculate move times and segment distances for a specific movement without moving the axis.
- MC_CalcMoveTimeAtPos: Calculate time until a certain position is reached. MC
- **MC_DriveSetTargetStep**: Set velocity without using build-in trajectory generator.

Example: MC_Power in "C++" language


```
class MC API MC POWER T : public MC FB T
public:
    // OUT's
                                                /* OUT(B): Effective state of the power stage */
    const MC T BOOL
                        &Status;
    const MC T BOOL
                       &Valid;
                                                 /* OUT(E): If TRUE a valid set of outputs is available */
    // IN's
                                                /* IN(B): As long as is true, power is on */
    MC T BOOL
                        Enable;
                                                /* IN(E): As long as is true, permits motion in pos direction only */
   MC T BOOL
                        EnablePositive;
                                                 /* IN(E): As long as is true, permits motion in neg direction only */
                        EnableNegative;
    MC T BOOL
   void MC THIS API OnCycle();
} MC PACKED;
/* application example */
   MC T AXIS INIT
                            oAxInit;
    MC T AXIS REF
                            *pMcAxis;
    MC POWER T
                            *pMcPower;
    /* initialization */
    pMcAxis = new MC T AXIS REF(axInit);
   pMcPower = new MC POWER T(pMcAxis);
    /* cyclic part */
    pMcPower->Enable = MC TRUE;
    pMcPower->pMcPower->OnCycle();
```


Example: MC_MoveRelative in "C++" language

class MC API MC MOVE RELATIVE T : public MC BUFFERED FB T

{

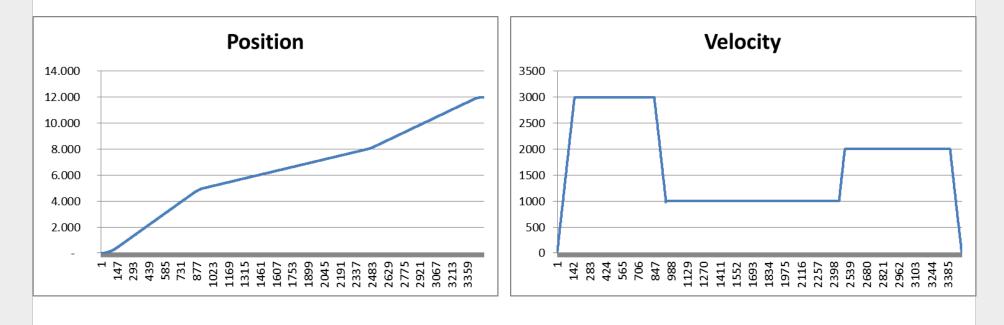
public:

//	OUT's	

const MC_T_BOOL	&Done	/* OUT(B): The axis is within a range close to the target position $^{\prime\prime}$
const MC_T_BOOL	&Busy	/* OUT(E): The FB is not finished and new output values are to be expected $^{\prime}$
// IN's		
MC_T_BOOL	Execute;	<pre>/* IN(B): Start the motion at rising edge */</pre>
MC_T_BOOL	ContinuousUpdate;	<pre>/* IN(E): Continuous Update (Trapezoid profile only) */</pre>
MC_T_REAL	Distance;	<pre>/* IN(B): Relative distance for the motion */</pre>
MC_T_REAL	Velocity;	/* IN(E): Value of the max velocity (always positive, not necessarily reached). */
MC_T_REAL	Acceleration;	/* IN(E): Value of the acc (always positive, increasing energy of the motor). */
MC_T_REAL	Deceleration;	/* IN(E): Value of the dec (always positive, decreasing energy of the motor). */
MC_T_REAL	Jerk;	/* IN(E): Value of the Jerk (always positive). */

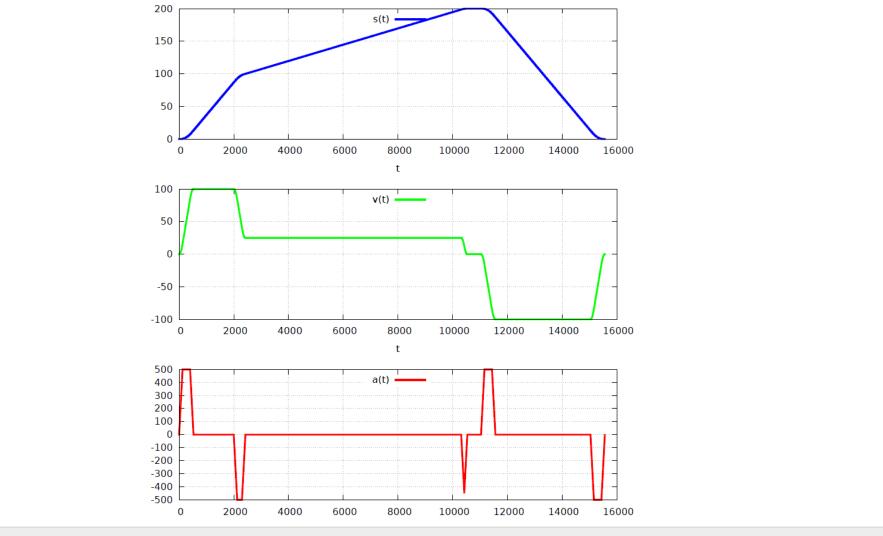
MC_MOVE_RELATIVE_T(MC_T_AXIS_REF *pAxis = MC_NULL);

void _MC_THIS_API OnCycle();

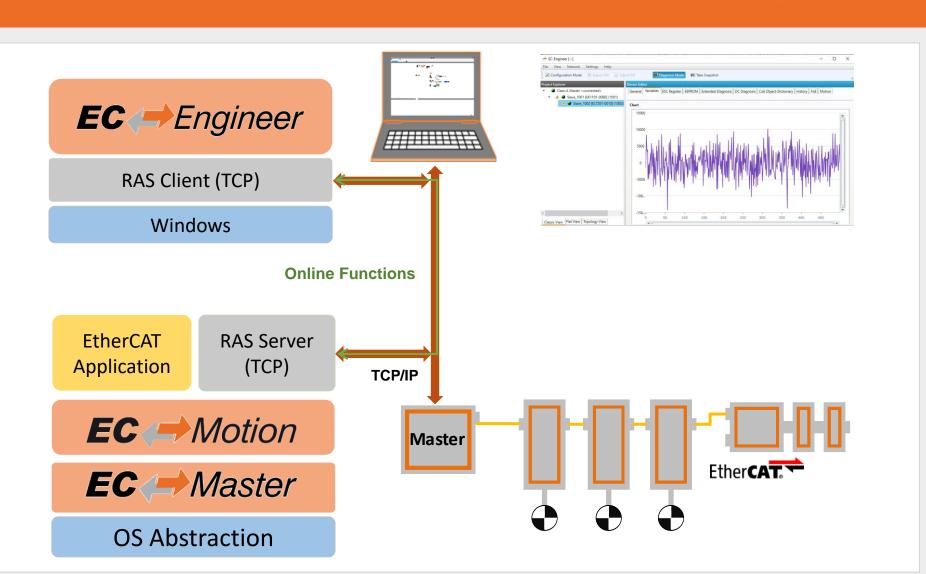


Example MC_MoveRelative Buffermode = MC_BLENDING_LOW

Sequence of three MC_MoveRelative without stop


- FB 1: MC_MoveRelative with Distance=5.0 and Velocity=3000
- FB 1: MC_MoveRelative with Distance=3.0 and Velocity=1000
- FB 1: MC_MoveRelative with Distance=4.0 and Velocity=2000

Drill example – jerk limited

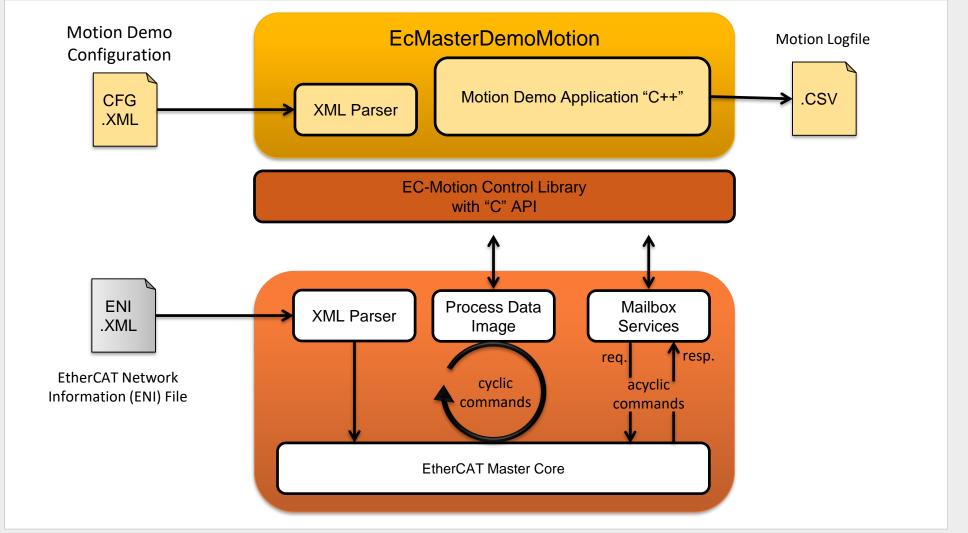


EC Motion

Diagnosis tools and Example EcMasterDemoMotion

Diagnosis with EC-Engineer tool

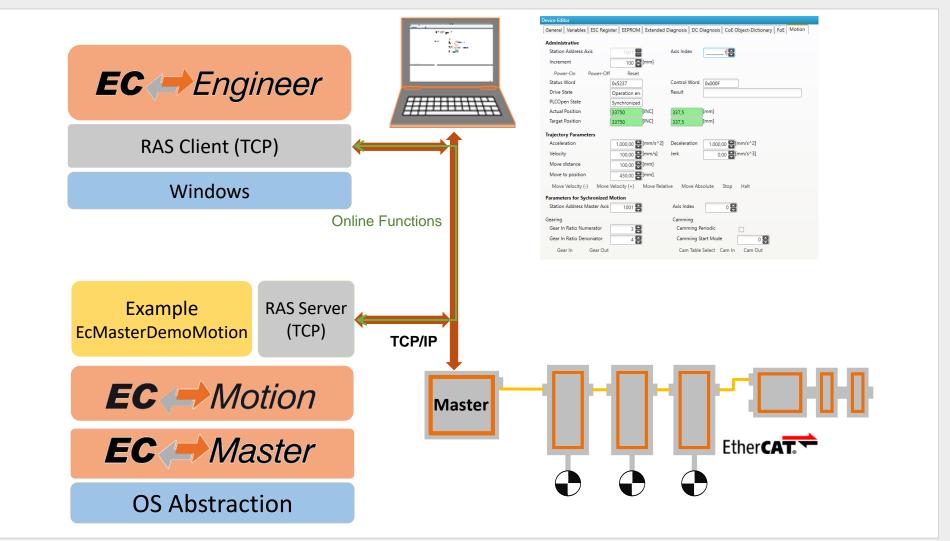
EC *Motion*


Diagnosis with EC-Engineer tool

Name				Datatype	Offset	-	Size	Value
Slave_1002 [EL7201-0010].FB Position.Position				UDINT	IN :	0.0	4.0	74999952
Slave_1002 [EL7201-0010].DRV Statusword.Statusword				UINT	IN :	4.0	2.0	4135
Slave_1002 [EL7201-0010].DRV Velocity actual value.Velocity	Jal value			DINT	IN :	6.0	4.0	-2129
Slave_1002 [EL7201-0010].DRV Controlword.Controlword				UINT	OUT :	0.0	2.0	15
Slave_1002 [EL7201-0010].DRV Target velocity.Target velocity				DINT	OUT :	2.0	4.0	0
Slave_1002 [EL7201-0010].DRV Target position.Target positio				UDINT	OUT :	6.0	4.0	75000000
							Add	to watch l
hart								
2000			0	Λ Λ	Ν			
1500					$-\Pi$			
1000					-++			
5000								
		N		1 1 1 1				
0								
0								
0 -500								
-500				- 17 1	<u>ا</u> لہ			
					یا ^ہ ۔			
-500								
-500				- - -				

Example EcMasterDemoMotion Software Architecture

Example EcMasterDemoMotion Create demo configuration file in EC-Engineer



≓ EC-Engineer []						- 0
File View Network Sett	ings Help					
Configuration Mode	Export ENI 🛛 🐺 Export EXI	🧮 Diagnosis Mode				
Project Explorer	Device Editor					
 Class-A Master 	General Modules PDO Mapping	Variables Advanced	Options Distributed	Clock Init Commands	CoE Object-Dictionary	Sync Units Motion
Slave_1001 [Acceln	Slave Settings					
		Axis 1	Axi			
	Mode of Operation	8	3	8 🚭		
	Increments per mm	1000		1000 🚭		
	Increment Factor			0		
	Controlword Object		Hex 0x6840	Dec Hex		
	Statusword Object	0x6041 Dec	Hex 0x6841	Dec Hex		
	Postion Actual Value Object	0x6064 Dec	Hex 0x6864	Dec Hex		
	Target Position Object		Hex 0x687A	Dec Hex		
	Target Velocity Object	0x60FF Dec	Hex 0x68FF	Dec Hex		
	Modes of operation Object	0x6060 Dec	Hex 0x6860	Dec Hex		
	Co	mmon Settings				
		nable RAS	✓ Port 6000			
	L	Jse Aux Clock				
	(CPU affinity		1 🗬		
	L	.ink Layer	-winpcap 192.168			
	١	/erbosity level		0 🗬	Export De	mo Config
	E	ENI Path	enter Path		Lypoir De	
	ŧ	Performance Measurement				
			Export Demo Con	fig		

Example EcMasterDemoMotion Remote Control with EC-Engineer

Example EcMasterDemoMotion Remote Control with EC-Engineer

Device Editor						
General Variables ESC Regi	ster EEPROM E	Extended Diagnosis	DC Diagnosis CoE C	bject-Dictionary FoE	Motion	
Administrative		- "	- "		1 1	
Station Address Axis	1001 🚔	Axis Index	1€			
Increment	100 🖨 [m	nm]				
Power-On Power-Off	Reset					
Status Word	0x5237	Control W	ord 0x000F]		
Drive State	Operation en:	Result		-		
PLCOpen State	Synchronized					
Actual Position	33750 []	NC] 337,5	[mm]			
Target Position	33750 [I]	NC] 337,5	[mm]			
Trajectory Parameters						
Acceleration	1.000,00 🚑 [m	nm/s^2] Decelerati	on 1.000,00	mm/s^2]		
Velocity	100,00 🖨 [m		0,00			
Move distance	100,00 🖨 [m	nm]				
Move to position	450,00 🖨 [m	nm]				
Move Velocity (-) Move	Velocity (+) M	love Relative Move	e Absolute Stop	Halt		
Parameters for Sychronized Motion						
Station Address Master Axis	1001 🖨	Axis Inde	x 0 🗖			
Gearing		Camming	1			
Gear In Ratio Numerator	3	Cammi	ng Periodic			
Gear In Ratio Denoniator	4	Cammi	ng Start Mode	0		
Gear In Gear Out		Cam T	able Select Cam In	Cam Out		

Highlights

- CiA402 Profile
- Jerk limited movements
- Changing parameters during movement (continuous update)
- Software limits
- Buffer modes (buffered, blending)
- Operating modes
 - Cyclic Synchronous Position (CSP)
 - Cyclic Synchronous Velocity (CSV)
 - Profile Position (PP)
- Virtual axis
- Efficient implementation ightarrow Low CPU load
- Library includes source code

