
© Copyright IBM Corporation 2004 Trademarks
Migrating Win32 C/C++ applications to Linux on POWER, Part 1:
Process, thread, and shared memory services

Page 1 of 13

Migrating Win32 C/C++ applications to Linux on
POWER, Part 1: Process, thread, and shared memory
services
Nam Keung
Chakarat Skawratananond

June 10, 2004

This article covers Win32 API mapping, particularly process, thread, and shared memory
services to Linux on POWER. The article can help you decide which of the mapping services
best fits your needs. The author takes you through the APIs mapping he faced while porting a
Win32 C/C++ application.

Overview
There are many ways to port and migrate from the Win32 C/C++ applications to the pSeries
platform. You can use freeware or 3rd party tools to port the Win32 application code to move to
Linux. In our scenario, we decided to use a portability layer to abstract the system APIs call. A
portability layer will offer our application the following benefits:

• Independence from the hardware
• Independence from the operating system
• Independence from changes introduced from release to release on operating systems

• Independence from operating system API styles and error codes
• Ability to uniformly place performance and RAS hooks on calls to the OS

Because the Windows environment is quite different from the pSeries Linux environment, porting
across UNIX platforms is considerably easier than porting from the Win32 platform to the UNIX
platform. This is expected, as many UNIX systems share a common design philosophy and
provide a lot of similarities at the application layer. However, the Win32 APIs are in limited in the
task of porting to Linux. This article identifies issues due to differences in design between Linux
and Win32.

Initialization and termination
On Win2K/NT, the initialization and termination entry point for a DLL is the _DLL_InitTerm
function. When each new process gains access to the DLL, this function initializes the necessary
environment for the DLL. When each new process frees its access to the DLL, this function
terminates the DLL for that environment. This function is called automatically when you link to

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/developerworks/ibm/trademarks/

developerWorks® ibm.com/developerWorks/

Migrating Win32 C/C++ applications to Linux on POWER, Part 1:
Process, thread, and shared memory services

Page 2 of 13

the DLL. For applications, an additional initialization and termination routine is included in the
_DLL_InitTerm function.

On Linux, the GCC has an extension that allows specifying that a function should be called
when the executable or shared object containing it is started up or finished. The syntax is
__attribute__((constructor)) or __attribute__((destructor)). These are basically the same
as constructors and destructors to replace the _init and _fini functions from the glibc library.

The C prototypes for these functions are:

void __attribute__ ((constructor)) app_init(void);
void __attribute__ ((destructor)) app_fini(void);

Win32 sample
_DLL_InitTerm(HMODULE modhandle, DWORD fdwReason, LPVOID lpvReserved)
{
 WSADATA Data;
 switch (fdwReason)
 {
 case DLL_PROCESS_ATTACH:
 if (_CRT_init() == -1)
 return 0L;
 /* start with initialization code */
 app_init();
 break;
 case DLL_PROCESS_DETACH:
 /* Start with termination code*/
 app_fini();
 _CRT_term();
 break;
 â�¦..
 default:
 /* unexpected flag value - return error indication */
 return 0UL;
 } return 1UL; /* success */
}

Process service
The Win32 process model has no direct equivalents to fork() and exec(). Rather than always
inherit everything as is done in Linux with the fork() call, the CreateProcess() accepts explicit
arguments that control aspects of the process creation, such as file handle inheritance.

The CreateProcess API creates a new process containing one or more threads that run in the
context of the process, and there is no relationship between the child and parent processes. On
Windows NT/2000/XP, the returned process ID is the Win32 process ID. On Windows ME, the
returned process ID is the Win32 process ID with the high-order bit stripped off. When a created
process terminates, all the data associated with the process is erased from the memory.

To create a new process in Linux, the fork() system call duplicates the process. After a new
process is created, a parent and child relationship is automatically established and the child
process inherits all the attributes from the parent process by default. Linux creates a new process
using a single system call with no parameters. The fork() returns the child's process ID to the
parent and none to the child.

ibm.com/developerWorks/ developerWorks®

Migrating Win32 C/C++ applications to Linux on POWER, Part 1:
Process, thread, and shared memory services

Page 3 of 13

Win32 processes are identified both by handles and process IDs, whereas Linux has no process
handles.

Process mapping table
Win32 Linux

CreateProcess fork()
execv()

TerminateProcess kill

ExitProcess() exit()

GetCommandLine argv[]

GetCurrentProcessId getpid

KillTimer alarm(0)

SetEnvironmentVariable putenv

GetEnvironmentVariable getenv

GetExitCodeProcess waitpid

Create process service
In Win32, the first argument of CreateProcess() specifies the program to run, and the second
argument provides the command line arguments. CreateProcess takes other process parameters
as arguments. The second-to-last argument is a pointer to a STARTUPINFORMATION
structure, which specifies the standard devices for the process and other start up information
about the process environment. You need to set the hStdin, hStdout, and hStderr members of
STARTUPINFORMATION structure before passing its address to CreateProcess to redirect
standard input, standard output, and standard error of the process. The last argument is a pointer
to a PROCESSINFORMATION structure, which is filled up by created processes. Once the
process starts, it will contain, among other things, the handle to the created process.

Win32 example
PROCESS_INFORMATION procInfo;
STARTUPINFO startupInfo;
typedef DWORD processId;
char *exec_path_name
char *_cmd_line;

GetStartupInfo(&startupInfo); // You must fill in this structure
if(CreateProcess(exec_path_name, // specify the executable program
 _cmd_line, // the command line arguments
 NULL, // ignored in Linux
 NULL, // ignored in Linux
 TRUE, // ignored in Linux
 DETACHED_PROCESS | HIGH_PRIORITY_CLASS,
 NULL, // ignored in Linux
 NULL, // ignored in Linux
 &startupInfo,
 &procInfo))
 *processId = procInfo.dwProcessId;
else
{
 *processId = 0;
 return RC_PROCESS_NOT_CREATED;
}

developerWorks® ibm.com/developerWorks/

Migrating Win32 C/C++ applications to Linux on POWER, Part 1:
Process, thread, and shared memory services

Page 4 of 13

In Linux, the processId is an integer. The search directories in Linux are determined by the
PATH environment variable (exec_path_name).The fork() function makes a copy of the
parent, including the parent's data space, heap, and stack. The execv() subroutine uses the
exec_path_name to pass the calling process current environment to the new process.

This function replaces the current process image with a new process image specified by
exec_path_name. The new image is constructed from a regular, executable file specified by
exec_path_name. No return is made because the calling process image is replaced by the new
process image.

Equivalent Linux code
�include <stdlib.h>
�include <stdio.h>

int processId;
char *exec_path_name;
char * cmd_line ;

cmd_line = (char *) malloc(strlen(_cmd_line) + 1);

if(cmd_line == NULL)
 return RC_NOT_ENOUGH_MEMORY;

strcpy(cmd_line, _cmd_line);

if((*processId = fork()) == 0) // Create child
 {
 char *pArg, *pPtr;
 char *argv[WR_MAX_ARG + 1];
 int argc;
 if((pArg = strrchr(exec_path_name, '/')) != NULL)
 pArg++;
 else
 pArg = exec_path_name;
 argv[0] = pArg;
 argc = 1;

 if(cmd_line != NULL && *cmd_line != '\0')
 {

 pArg = strtok_r(cmd_line, " ", &pPtr);

 while(pArg != NULL)
 {
 argv[argc] = pArg;
 argc++;
 if(argc >= WR_MAX_ARG)
 break;
 pArg = strtok_r(NULL, " ", &pPtr);
 }
 }
 argv[argc] = NULL;

 execv(exec_path_name, argv);
 free(cmd_line);
 exit(-1);
}
else if(*processId == -1)
{
 *processId = 0;
 free(cmd_line);
 return RC_PROCESS_NOT_CREATED;
}

ibm.com/developerWorks/ developerWorks®

Migrating Win32 C/C++ applications to Linux on POWER, Part 1:
Process, thread, and shared memory services

Page 5 of 13

Terminate process service

In the Win32 process, the parent and child processes may require different access to an object
identified by a handle that the child inherits. The parent process can create a duplicate handle
with the desired access and inheritability. The Win32 sample code uses the following scenario to
terminate a process:

• Use OpenProcess to get the handle of the specified process
• Use GetCurrentProcess for its own handle
• Use DuplicateHandle to obtain the handle from the same object as the original handle

If the function succeeds, use the TerminateThread function to release the primary thread on the
same process. The TerminateProcess function is then used to unconditionally cause a process to
exit. It initiates termination and returns immediately.

Win32 sample code
if(thread != (HANDLE) NULL)
{
 HANDLE thread_dup;
 if(DuplicateHandle(OpenProcess(PROCESS_ALL_ACCESS, TRUE, processId),
 thread,
 GetCurrentProcess(),
 &thread_dup, //Output
 0,
 FALSE,
 DUPLICATE_SAME_ACCESS))
 {
 TerminateThread(thread_dup, 0);
 }
}
TerminateProcess(OpenProcess(PROCESS_ALL_ACCESS, TRUE, processId),
 (UINT)0);

In Linux, use the kill subroutine to send the SIGTERM signal to terminate the specified process
(processId). Then call the waitpid subroutine with the WNOHANG bit set. This checks the specified
process and is terminated.

Equivalent Linux code
pid_t nRet;
int status;

kill(processId, SIGTERM);
nRet = waitpid(processId, &status, WNOHANG); //Check specified
 process is terminated

Process still exists service

The Win32 OpenProcess returns the handle to the specified process (processId). If the function
succeeds, the GetExitCodeProcess will retrieve the status of the specified process and checks
whether the process status is STILL_ACTIVE.

developerWorks® ibm.com/developerWorks/

Migrating Win32 C/C++ applications to Linux on POWER, Part 1:
Process, thread, and shared memory services

Page 6 of 13

Win 32 sample
HANDLE nProc;
DWORD dwExitCode;

nProc = OpenProcess(PROCESS_ALL_ACCESS, TRUE, processId);
if (nProc != NULL)
{
 GetExitCodeProcess(nProc, &dwExitCode);
 if (dwExitCode == STILL_ACTIVE)
 return RC_PROCESS_EXIST;
 else
 return RC_PROCESS_NOT_EXIST;
}
else
 return RC_PROCESS_NOT_EXIST;

In Linux, use the kill subroutine to send the signal specified by the Signal parameter to the
process specified by the Process parameter (processId). The Signal parameter is a null value, the
error checking is performed, but no signal is sent.

Equivalent Linux code
if (kill (processId, 0) == -1 && errno == ESRCH) // No process can
 be found
 // corresponding to processId
 return RC_PROCESS_NOT_EXIST;
else
 return RC_PROCESS_EXIST;

Thread model
A thread is a basic entity to which the system allocates CPU time; each thread maintains
information to save its "context" while waiting to be scheduled. Each thread can execute any part
of the program code and share global variables of the process.

LinuxThreads is a pthreads compatible thread system built on top of the clone() system call.
Because threads are scheduled by the kernel, LinuxThreads supports blocking I/O operations
and multiprocessors. However, each thread is actually a Linux process, so the number of threads
a program can have is limited to the total number of processes allowed by the kernel. The Linux
kernel does not provide system calls for thread synchronization. The Linux Threads library
provides additional code to support operations on mutex and condition variables (using pipes to
block threads).

For signal handling when coupled with the LinuxThreads, each thread inherits a signal handler if
one was registered by a parent process that spawned the thread. Only the new features supported
in Linux Kernel 2.6 and higher will include the improved POSIX threading support, such as the
Native POSIX Thread Library for Linux (NPTL).

Important parts of the thread model are the thread synchronization, wait functions, thread local
storage, and initialization and termination abstraction. Below, the thread services are only
addressed as:

• A new thread is created, and the threadId is returned
• The current new thread can be terminated by invoking the pthread_exit function

ibm.com/developerWorks/ developerWorks®

Migrating Win32 C/C++ applications to Linux on POWER, Part 1:
Process, thread, and shared memory services

Page 7 of 13

Thread mapping table
Win32 Linux

_beginthread pthread_attr_init
pthread_attr_setstacksize
pthread_create

_endthread pthread_exit

TerminateThread pthread_cancel

GetCurrentThreadId pthread_self

Thread Creation
The Win32 application uses the C runtime libraries instead of using the Create_Thread APIs. The
routines of _beginthread and _endthread are used. These routines take care of any reentrancy
and memory leak problems, thread local storage, initialization, and termination abstraction.

Linux uses the pthread library call pthread_create() to spawn a thread.

The threadId is returned as an output parameter. A set of parameters are passed for creating
a new thread. The arguments execute a function when a new thread is created. The stacksize
argument is used as the size, in bytes, of the new thread's stack, and the actual argument is to be
passed to the function when the new thread starts executing.

Specify the thread procedure (function)
The creating thread must specify the starting function of the code that the new thread is to
execute. The starting address is the name of the threadproc function with a single argument,
threadparam. If the call succeeds in creating a new thread, the threadId is returned. The typedef
for Win32 threadId is a HANDLE. The typedef for Linux threadId is pthread_t.

threadproc
The thread procedure (function) to be executed. It receives a single void parameter.

threadparam
The parameter to be passed to the thread when it begins execution.

Set the stack size
In Win32, the thread stack is allocated automatically in the memory space of the process. The
system increases the stack as needed and frees it when the thread terminates. In Linux, the
stack size is set in the pthread attributes object; the pthread_attr_t is passed to the library call
pthread_create().

Win32 sample
int hThrd;
DWORD dwIDThread;
unsigned stacksize;
void *thrdparam; //parameter to be passed to the thread when it
 //begins execution
HANDLE *threadId;

if(stacksize < 8192)
 stacksize = 8192;
else
 stacksize = (stacksize/4096+1)*4096;

developerWorks® ibm.com/developerWorks/

Migrating Win32 C/C++ applications to Linux on POWER, Part 1:
Process, thread, and shared memory services

Page 8 of 13

 hThrd = _beginthread(thrdproc, // Definition of a thread entry
 //point
 NULL,
 stacksize,
 thrdparam);
if (hThrd == -1)
 return RC_THREAD_NOT_CREATED);
 *threadId = (HANDLE) hThrd;
__
 Equivalent Linux code

�include <pthread.h>

pthread_t *threadId;
void thrdproc (void *data); //the thread procedure (function) to
 //be executed.
 //It receives a single void parameter
void *thrdparam; //parameter to be passed to the thread when it
 //begins execution
pthread_attr_t attr;
int rc = 0;

if (thrdproc == NULL || threadId == NULL)
 return RC_INVALID_PARAM);

if (rc = pthread_attr_init(&attr))
 return RC_THREAD_NOT_CREATED); // EINVAL, ENOMEM

if (rc = pthread_attr_setstacksize(&attr, stacksize))
 return RC_THREAD_NOT_CREATED); // EINVAL, ENOSYS

if (rc = pthread_create(threadId, &attr, (void*(*)(void*))thrdproc,
 thrdparam))
 return RC_THREAD_NOT_CREATED); // EINVAL, EAGAIN

In Win32, one thread can terminate another thread with the TerminateThread function. However,
the thread's stack and other resources will not be deallocated. This is recommended if the thread
terminates itself. In Linux, the pthread_cancel method terminates execution of the thread identified
by the specified threadId.

Terminate thread service
Win32 Linux

TerminateThread((HANDLE *) threadId, 0); pthread_cancel(threadId);

Thread state
In Linux, threads are created in joinable state by default. Another thread can be synchronize with
the thread's termination and recover its termination code using the function pthread_join(). The
thread resources of the joinable thread are released only after it is joined.

Win32 uses WaitForSingleObject() to wait for a thread to terminate.

Linux uses pthread_join to do the same.

Win32 Linux

unsigned long rc; unsigned long rc=0;

ibm.com/developerWorks/ developerWorks®

Migrating Win32 C/C++ applications to Linux on POWER, Part 1:
Process, thread, and shared memory services

Page 9 of 13

rc = (unsigned long) WaitForSingleObject
(threadId, INIFITE);

rc = pthread_join(threadId,
void **status);

In Win32, _endthread() is used to end the execution of the current thread. In Linux, it is
recommended to use pthread_exit() to exit a thread to avoid implicitly calling the exit routine. In
Linux, the retval is the return value of the thread, and it can be retrieved from another thread by
calling pthread_join().

End the execution of current thread service
Win32 Linux

_endthread(); pthread_exit(0);

In the Win32 process, The GetCurrentThreadId function retrieves the thread identifier of the calling
thread. Linux uses the pthread_self() function to return the calling thread's ID.

Get the current thread ID service
Win32 Linux

GetCurrentThreadId() pthread_self()

The time period for the Win32 Sleep function is in milliseconds and can even be INFINITE, in
which case the thread will never resume. The Linux sleep function is similar to Sleep, but the time
periods are measured in seconds. To obtain the millisecond resolution, use the nanosleep function
to provide the same service.

Sleep service
Win32 Equivalent Linux code

Sleep (50) struct timespec timeOut,remains;
timeOut.tv_sec = 0;
timeOut.tv_nsec = 500000000; /* 50 milliseconds
*/
nanosleep(&timeOut, &remains);

The Win32 SleepEx function suspends the current thread until one of the following occurs:

• An I/O completion callback function is called
• An asynchronous procedure call (APC) is queued to the thread
• The minimum time-out interval elapses

Linux uses the sched_yield to do the same thing.

Win32 Linux

SleepEx (0,0) sched_yield()

Shared memory service
Shared memory allows multiple processes to map a portion of their virtual address to a common
memory region. Any process can write data to a shared memory region, and the data are readable

developerWorks® ibm.com/developerWorks/

Migrating Win32 C/C++ applications to Linux on POWER, Part 1:
Process, thread, and shared memory services

Page 10 of 13

and modified by other processes. The shared memory is used to implement an interprocess
communication media. However, shared memory does not provide any access control for
processes that use it. It is a common practice to use "locks" along with shared memory.

A typical usage scenario is:

1. A server creates a shared memory region and sets up a shared lock object
2. A client can attach the shared memory region created by the server
3. Both the client and server can use the shared lock object to get access to the shared memory

region
4. The client and server can query the location of the shared memory resource

Shared memory mapping table

Win32 Linux

CreateFileMaping,
OpenFileMapping

mmap
shmget

UnmapViewOfFile munmap
shmdt

MapViewOfFile mmap
shmat

Create a shared memory resource

Win32 creates a shared memory resource by shared memory-mapped files. Linux uses the
shmget/mmap function to access files by directly incorporating file data into memory. The memory
areas are known as the shared memory segments.

Files or data can also be shared among multiple processes or threads. But, this requires
synchronization between these processes or threads and its handling is up to the application.

The CreateFileMapping() reinitializes the commitment of the shared resource to the process
if the resource already exists. The call can fail if there is insufficient memory free to handle the
erroneous shared resource. OpenFileMapping() indicates the shared resource must already exist;
this call is merely requesting access to it.

In Win32, the CreateFileMapping does not allow you to grow the file size, but that's not the case
in Linux. In Linux, if the resource already exists, it will be re-initialized. It may be destroyed and
recreated. Linux creates the shared memory that is accessed using a name. The open() system
call determines whether the mapping is readable or writable. The parameters passed to mmap()
must not conflict with the access requested during open(). The mmap() needs to supply the size of
the file as the number of bytes to map.

For 32-bit kernels, there are 4GB virtual address spaces. The first 1 GB is for device drivers. The
last 1 GB is for kernel data structures. The 2GB in the middle can be used for shared memory.
Currently, Linux on POWER allows 4GB for the kernel and up to 4GB virtual address space for
user applications.

ibm.com/developerWorks/ developerWorks®

Migrating Win32 C/C++ applications to Linux on POWER, Part 1:
Process, thread, and shared memory services

Page 11 of 13

Mapping memory access protection bits
Win32 Linux

PAGE_READONLY PROT_READ

PAGE_READWRITE (PROT_READ | PROT_WRITE)

PAGE_NOACCESS PROT_NONE

PAGE_EXECUTE PROT_EXEC

PAGE_EXECUTE_READ (PROT_EXEC |PROT_READ)

PAGE_EXECUTE_READWRITE (PROT_EXEC | PROT_READ | PROT_WRITE)

To find out the allocation of the Linux shared memory, you can look at shmmax, shmmin and
shmall under the /proc/sys/kernel directory.

An example to increase shared memory on Linux is:

echo 524288000 > /proc/sys/kernel/shmmax

The maximum shared memory is increased to 500 MB.

Below is the Win32 sample code, and the equivalent of the Linux mmap implementation, to create
a shared memory resource.

Win32 sample code
typedef struct
 {
 // This receives a pointer within the current process at which the
 // shared memory is located.
 // The same shared memory may reside at different addresses in other
 // processes which share it.
 void * location;
 HANDLE hFileMapping;
}mem_shared_struct, *mem_shared, *token;

mem_shared_struct *token;

if ((*token = (mem_shared) malloc(sizeof(mem_shared_struct))) == NULL)
 return RC_NOT_ENOUGH_MEMORY;

if (newmode == new_shared_create)
 (*token)->hFileMapping = CreateFileMapping((HANDLE) 0xFFFFFFFF, NULL,
 PAGE_READWRITE,
 0,
 (DWORD) size,
 (LPSTR) name);
 else
 (*token)->hFileMapping = OpenFileMapping(FILE_MAP_ALL_ACCESS,
 FALSE,
 (LPSTR) name);
if ((*token)->hFileMapping == NULL)
{
 free(*token);
 return RC_SHM_NOT_CREATED);
}

(*token)->location = MapViewOfFile((*token)->hFileMapping,
 FILE_MAP_READ | FILE_MAP_WRITE,
 0, 0, 0);

developerWorks® ibm.com/developerWorks/

Migrating Win32 C/C++ applications to Linux on POWER, Part 1:
Process, thread, and shared memory services

Page 12 of 13

if ((*token)->location == NULL)
{
 CloseHandle((*token)->hFileMapping);
 free(*token);
 return RC_OBJECT_NOT_CREATED;
}
__
 Equivalent Linux code

typedef struct
{
 void *location;
 int nFileDes;
 cs_size nSize;
 char *pFileName;
}mem_shared_struct, *mem_shared, token;

mode_t mode=0;
int flag=0;
int i, ch='\0';
char name_buff[128];

if (newmode == new_shared_create)
 flag = O_CREAT;
else if (newmode != new_shared_attach)
 return RC_INVALID_PARAM;

if ((*token = (mem_shared) malloc(sizeof(mem_shared_struct))) == NULL)
 return RC_NOT_ENOUGH_MEMORY;

strcpy(name_buff, "/tmp/");
strcat(name_buff, name);

if(((*token)->pFileName = malloc(strlen(name_buff)+1)) == NULL)
{
 free(*token);
 return RC_NOT_ENOUGH_MEMORY;
}

mode |= S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP;
flag |= O_RDWR;

if(newmode == new_shared_create)
 remove(name_buff);

if(((*token)->nFileDes = open(name_buff, flag, mode)) < 0)
{
 free((*token)->pFileName);
 free(*token);
 return RC_OBJECT_NOT_CREATED;
}

if(newmode == new_shared_create)
{
 lseek((*token)->nFileDes, size - 1, SEEK_SET);
 write((*token)->nFileDes, &ch, 1);
}
if(lseek((*token)->nFileDes, 0, SEEK_END) < size)
{
 free((*token)->pFileName);
 free(*token);
 return RC_MEMSIZE_ERROR;
}
(*token)->location = mmap(0, size,
 PROT_READ | PROT_WRITE,
 MAP_VARIABLE | MAP_SHARED,
 (*token)->nFileDes,

ibm.com/developerWorks/ developerWorks®

Migrating Win32 C/C++ applications to Linux on POWER, Part 1:
Process, thread, and shared memory services

Page 13 of 13

 0);

if((int)((*token)->location) == -1)
{
 free((*token)->pFileName);
 free(*token);
 return RC_OBJECT_NOT_CREATED;
}

(*token)->nSize = size;strcpy((*token)->pFileName, name_buff);

To destroy a shared memory resource, the munmap subroutine unmaps a mapped file region. The
munmap subroutine only unmaps regions created from calls to the mmap subroutine. If an address
lies in a region that is unmapped by the munmap subroutine and that region is not subsequently
mapped again, any reference to that address will result in delivery of a SIGSEGV signal to the
process.

Delete a shared memory resource

Win32 Equivalent Linux code

UnmapViewOfFile(token->location);
CloseHandle(token->hFileMapping);

munmap(token->location, token->nSize);
close(token->nFileDes);
remove(token->pFileName);
free(token->pFileName);

Conclusion

This article covers the Win32 APIs mapping to Linux on POWER regarding the initialization and
termination, process, thread, and shared memory services. This is by no means to have a full
coverage of all APIs mapping and readers can only be used this information as a reference to
migrate to Win32 C/C++ application to POWER Linux.

© Copyright IBM Corporation 2004
(www.ibm.com/legal/copytrade.shtml)
Trademarks
(www.ibm.com/developerworks/ibm/trademarks/)

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/developerworks/ibm/trademarks/

	Table of Contents
	Overview
	Initialization and termination
	Process service
	Create process service
	Terminate process service
	Process still exists service

	Thread model
	Thread Creation
	Specify the thread procedure (function)
	Set the stack size
	Thread state

	Shared memory service
	Create a shared memory resource

	Conclusion
	Trademarks

